Human Motor Control

(how the Central Nervous System plans motion)

Shannon Danforth January 2021

I got this information from two classes:

- Kinesiology 533: Neuromechanics
 - Interaction of the nervous and musculoskeletal systems during human/animal movement
 - Taught by Dan Ferris (now a professor at University of Florida)
- Mechanical Engineering 646: Mechanics and Control of Human Movement
 - Locomotor mechanics and design/control of wearable robotic systems
 - Taught by Elliott Rouse
 - In particular, a guest lecture in this class by his postdoc Tyler Clites
 - I will also use a Simulink example developed by Tyler!

What's going on behind the scenes to make this happen?

Robotic control hierarchy

High-level

What is the task that we want Atlas to do?

Mid-level

What are the joint dynamics that Atlas needs to accomplish it?

Low-level

How do we deliver the appropriate amount of current to Atlas' motors to produce those dynamics?

[Slide copied from Tyler Clites' presentation]

The same control aspects are important for human motion

[Katelyn Ohashi, UCLA Athletics, 2019]

Human control hierarchy

High-level

What task do I want to do?

Mid-level

What are the joint dynamics that I need to accomplish it?

Low-level

How do I deliver the appropriate activations to my muscles to produce those dynamics?

Why do we care about how humans plan motion?

[appreciategoods.com]

Rehabilitation

Wearable Robots

[aayushman.in]

Quick background: Central Nervous System (CNS)

- Primary processing unit
- High-level task planning
- Volitional control

- Secondary, distributed processing unit
- Low-level execution

[Bullet points from Tyler Clites' presentation]

• Reflexive control

Quick background: Central Nervous System (CNS)

Brain

Realth LAB

Quick background: Muscle Activation

ROAHM LA

Quick background: Afferent and efferent neurons

Outline of our human motor control topics

- Low-level control
 - Feedforward
 - Feedback
 - Hybrid FF+FB
- Mid-level control
 - Inverse Kinematics and Inverse Dynamics
 - Equilibrium Point Hypothesis
 - Muscle Synergies
 - Internal Models
 - Uncontrolled Manifold Hypothesis

11

Outline of our human motor control topics

• Low-level control

- Feedforward
- Feedback
- Hybrid FF+FB
- Mid-level control
 - Inverse Kinematics and Inverse Dynamics
 - Equilibrium Point Hypothesis
 - Muscle Synergies
 - Internal Models
 - Uncontrolled Manifold Hypothesis

We'll use a pendulum example for low-level control

[Kuo A., Motor Control, 2002]

We'll use a pendulum example for low-level control

[Kuo A., Motor Control, 2002]

We'll use a pendulum example for low-level control

ROAHM LAB

Feedforward (open-loop) control

A movement is "launched" at some target, and can't be corrected after.

[foxsports.com]

ROAHM LAB

[Angry Birds]

[Rocky IV]

Ingredients of feedforward control

Feedforward control - Simulink demo

[Simulink demo created by Tyler Clites]

15

Feedforward control - Simulink demo takeaways

Benefits:

No dependence on sensor accuracy

Pitfalls:

Sensitive to torque disturbance and timing errors

Feedback (closed-loop) control

A feedback system constantly monitors its own progress and adjusts its control accordingly.

[travelers.com]

[slacklineinternational.org]

[blog.dayfire.com]

Ingredients of feedback control

Feedback control - Simulink demo

EMBIR Lab

Feedback control - Simulink demo takeaways

Benefits:

No dependence on timing, robust to torque disturbance

Pitfalls:

Sensitive to measurement error in sensors

20

Feedforward + feedback control - Simulink demo

[Simulink demo created by Tyler Clites]

22

	Torque Disturbance	Timing Disturbance	Sensor Noise
Feedforward	X	X	\checkmark
Feedback	\checkmark	\checkmark	X
Hybrid	\checkmark	\checkmark	\checkmark

Outline of our human motor control topics

- Low-level control
 - Feedforward
 - Feedback
 - Hybrid FF+FB

• Mid-level control

- Inverse Kinematics and Inverse Dynamics
- Equilibrium Point Hypothesis
- Muscle Synergies
- Internal Models
- Uncontrolled Manifold Hypothesis

ROAHM LAB

Inverse kinematics

We are jointed $(heta_1, heta_2)$ beings in a Cartesian (x,y) world

ROAHM LAB

Experiment where inverse kinematics theory falls short

Evolution and Motion of Biology and Robotics

[Lackner, J.R. and Dizio, P., J. Neurophysiology, 1994]

RAHM LAB

26

Inverse dynamics

Equilibrium Point Hypothesis

Main idea: when we identify a goal for our end effector (e.g., reaching our hand to a desired location), we set an equilibrium point for our joints. If we're perturbed, we will settle back on the equilibrium point.

Equilibrium Point Hypothesis - supporting experiment

Deafferented monkeys without visual feedback can still move to a desired target, even when a disturbance is applied

FIG. 1. Monkey set up in arm apparatus. Arm is strapped to splint, which pivots at elbow. Target lights are mounted in perimeter arc at 5° intervals. During experimental session, the monkey was not permitted to see its arm, and the room was darkened.

EPH doesn't hold up for the rotating room experiment...

[Lackner, J.R. and Dizio, P., J. Neurophysiology, 1994]

Muscle Synergies

31

reducing degrees of freedom by coordinating

wheels as a group

controlling each wheel separately

KO

[Images from Dan Ferris' presentation]

ROAHM LA

Muscle Synergies - cool frog experiment

K@

Muscle Synergies - viewpoints depending on field

neuroscience

MUSCLE SYNERGIES ARE AWESOME! HUMANS HAVE FOUND A WAY TO EFFECTIVELY RECRUIT MUSCLES BY REDUCING DEGREES OF FREEDOM. neurorehabilitation

MUSCLE SYNERGIES ARE FRUSTRATING. THEY MAKE IT DIFFICULT FOR STROKE PATIENTS TO UNCOUPLE GROUPS OF MUSCLES.

ROAHM LAB

Muscle Synergies - EMG decomposition

Muscle Synergies - EMG decomposition

- EMG from stroke patients needed fewer components
- EMG from children needed fewer components than EMG from adults

Internal Models

Internal Models

[Wolpert, D.M. and Flanagan, J.R., Current Biology, 2001]

ROAHM LAB

ROAHM LAB

39

[Shadmehr, R. and Mussa-Ivaldi, F.A., J. Neuroscience, 1994]

ROAHM LAB

40

[Shadmehr, R. and Mussa-Ivaldi, F.A., J. Neuroscience, 1994]

improvement (updating internal model) over time...

[Shadmehr, R. and Mussa-Ivaldi, F.A., J. Neuroscience, 1994]

Uncontrolled Manifold Hypothesis

[Image from theindependent.com]

R

43

Uncontrolled Manifold Hypothesis

- The nervous system controls some degrees of freedom (DOFs), but may care less about other DOFs
- This hypothesis states that the variance within a given task is confined to a subspace of DOFs that can preserve task performance
- The subspace is called the uncontrolled manifold (UCM)
- Example UCM: During sit-to-stand, all combinations of lower-limb joint angles that together place the center of mass in a certain position

[Scholz, J.P. and Schöner, G., Exp. Brain Research, 1999]

Realth LAB

In conclusion.... Science is hard!!

- Low-level control
 - Feedforward
 - Feedback
 - Hybrid FF+FB
- Mid-level control
 - Inverse Kinematics and Inverse Dynamics

ัน

θ

- Equilibrium Point Hypothesis
- Muscle Synergies
- Internal Models
- Uncontrolled Manifold Hypothesis

So many cool experiments about human/animal motor control, so many different ways to interpret them...

45